RS232: PRINTER AND PC CONNECTIONS

RS232 output (female)

Ordered functionality	prii	nter	рс		
Pin number	Indicator side	Printer side	Indicator side	Pc side	
1	(+12VDC) Optional	(+12VDC) Optional	Not Connected	Not Connected	
2	GND	GND	GND	GND	
3	ТХ	RX	ТХ	RX	
ŧ	CTS	RTS	RX	ТХ	

CONNECTION TO SEPARATE PRINTER

In case this option is available, you will have a 4-pins female connector. The connection has been installed as follows:

Indicator function	4-pins female connector		
TX	pin nr 3		
CTS	pin nr 4		
GND	pin nr 2		

CONNECTION PC (OPTION)

In case this option is available, you will have a 4-pins female connector. The connection has been installed as follows:

Indicator function	4-pins female connector
TX	pin nr 3
RX	pin nr 4
GND	pin nr 2

In case a connecting cable is delivered, this will be configured as follows:

4-pins male cable part	colour	9 pins female PC function sub D connector		
TX	white	pin nr 2	RX	
RX	brown	pin nr 3	ΤX	
GND	yellow	pin nr 5	GND	

PC PROTOCOL BIDIRECTIONAL (2100NUpgrade).

With parameter 25 the data protocol for the comport may be set. If parameter 25 is set to "2", the PC bi-directional command structure is active.

The protocol commands are ASCII commands.

ASCII command	Response string	operation
$SZ < CR > *_1$	OK <cr>/ERR<cr></cr></cr>	Set zero value
RZ <cr></cr>	OK <cr>/ERR<cr></cr></cr>	Reset zero value
SP <value><cr>*2</cr></value>	OK <cr>/ERR<cr></cr></cr>	Set preset tare value
$ST < CR > *_1$	OK <cr>/ERR<cr></cr></cr>	Set tare
SG <cr></cr>	G+0001.0 <cr></cr>	Set gross mode (continuously)
SN <cr></cr>	N+0001.0 <cr></cr>	Set net mode (continuously)
SW <cr></cr>	W+00010+000103805 <cr></cr>	Set weights mode (continuously)
RT <cr></cr>	OK <cr>/ERR<cr></cr></cr>	Reset tare
RP <cr></cr>	OK <cr></cr>	Reset preset tare
GP <cr></cr>	P+0001.0 <cr></cr>	Get preset tare
GT <cr></cr>	T+0001.0 <cr></cr>	Get tare
GG <cr></cr>	G+0001.0 <cr></cr>	Get gross
GN <cr></cr>	N+0001.0 <cr></cr>	Get net
GW <cr></cr>	W+00010+000103805 <cr></cr>	Get net, gross, status and checksum
MN <cr></cr>	N+0001.0 <cr></cr>	Get net, wait for no motion
MG <cr></cr>	G+0001.0 <cr></cr>	Get gross, wait for no motion

*1: With the indicator 2100 these commands are the same. Only the number of divisions out of zero determines whether the weight is tared out (>2% of full scale) or zeroed out (<=2% of full scale)

*2: If the scale is working in ranges with a number after the decimal point, the preset tare value should be given in accordingly. If the scale is working in ranges equal to or higher than 1 kg/lb, then the value should be entered with the decimal point at the end of the value. E.g. ranges 0.1/0.2/0.5 >> P0001.5 < CR >, ranges 1/2/5/10/20/50 >> P00150. < CR >

Special commands 'GW' and 'SW'

The 'GW' and 'SW' are commands with checksums. With these commands it is possible to get net, gross and status data. The respons string doesn't have the decimal point information. The 'SW' update rate is the time as the other commands (max. 2x/second).

Structure of the response string:

W	+00010	+00010	38	05	<cr></cr>
Data ID	Net value	Gross value	Status(hex)	Checksum	End of string

Status bits:			
Bit number	Bit definition	Status '0'	Status '1'
7 (MSB)	Indicator error	No errors	Indicator error
6	Tare active	No tare active	Tare active
5	Zero corrected	No zero correction	Zero corrected
4	Weight stable	Weight unstable	Weight stable
3	Within negative zero range	Out of neg. zero range	Within neg. zero range
2	Above max load	Under max load	Above max load
1	Underload AD	No underload	underload
0 (LSB)	Overload AD	No overload	overload

Example:

- -

Calculating the checksum:

The checksum is the inverted sum of all ASCII characters in the response string previous to the checksum.

Example:

Response string = W+00010+000103805<CR>

- 1. Add all hex values of the characters in the string. [W]+[+]+[0]+[0]+[0]+[1]+[0]+[+]+[0]+[0]+[0]+[1]+[0]+[3]+[8] Total is 2FA(hex)
- 2. Remove the most significant digit, result is FA(hex)
- 3. Invert the hexadecimal value, result is 05(hex)
- 4. Convert the hexadecimal value to characters, result is [0][5

REMOTE DISPLAY PROTOCOL (2100NUpgrade).

The indicator 2100 offers the possibility to communicate one-directional with a remote display, PC or other host device.

In remote display mode a data string is send out continuously.

Whatever mode is indicated on the indicator will also be send out through the comport. In 'Gross' mode the string will contain the gross weight, in 'Net' mode the string will contain the net weight.

With parameter 25 the data protocol for the comport may be set. If parameter 25 is set to "0", the Remote Display command structure is active.

The protocol commands are ASCII commands.

Data string:

1	2	3	4	5	6	7	8
+/-	0	0	0	0	0		<cr></cr>
Sign	1 st digit	2^{nd}	3rd	4th	5th	Decimal point position	End of
		digit	digit	digit	digit	depending of range	string

NOTE: In cases of error messages the indicator sends out the equal sign (= ascii value 61) and a <CR>.

Examples:

1	2	3	4	5	6	7	8	Condition on display indicator
+	0	0	2	5		0	CR	Weight displayed of 25.0 kg(lb)
-	0	1	3	0	•	5	CR	Weight displayed of -130.5 kg(lb)
+	0	0	0	0		0	CR	Weight displayed of 0.0 kg(lb)
=	Ξ	=	Ξ	=	Ξ	Ξ	CR	Error message displayed e.g. HELP1

2100N PC PROTOCOL

With parameter P24 the data protocol for the comport may be set. If parameter 24 is set to "1", 2100N PC (continuous) command structure is active.

If the weighing system is connected to a PC or a terminal, the following RS 232 ASCII protocol is valid.

Baudrate:	9600 baud (in case of an old application 1200 baud)
Databits:	8 bits
Stopbits:	1 stopbit
Parity:	none

The continuous datastring is built as follows:

	Data ID	Weighing value	Status	Checksum	End character	
	W	+00123.	38	05	<cr></cr>	
	W	+0012.3	38	05	<cr></cr>	
ASCII nr	1	2,3,4,5,6,7,8	9,10	11,12	13	

- The decimal indication in the weight has ASCII value 046.

- The end character <CR> has ASCII value 013.

- The starting character has ASCII value 087.

- The total length of the datastring always is 13 ASCII characters.

The status is built from 2 ASCII characters. The right-hand character indicates the status of bit (0 until 3) + 30h. The left-hand character indicates the status of bit (4 until 7) + 30h. The statusbits have following meanings:

1=on	0=off
1=on	0=off
1=on	0=off
1=motion	0=stable
1=within +/- 2%	0=outside +/-2%
1=max +9e HELP1	0=within max +9e
1=+signal>max HELP7	0=+signal <max< td=""></max<>
1=-signal>min HELP3	0=-signal <min< td=""></min<>
	1=on 1=on 1=on 1=motion 1=within +/- 2% 1=max +9e HELP1 1=+signal>max HELP7 1=-signal>min HELP3

Bit nr 0 and 1 highHELP2 taring under gross zeroBit nr 0 and 2 highHELP4 PT value larger than MAX1Bit nr 0 and 1 and 2 high LOW BATBit 0 until 3 + 30hex shows the right-hand ASCII character in the status word.Bit 4 until 7 + 30hex shows the left-hand ASCII character in the status word.

Example:

The system is loaded with 250 kg of which 50 kg has been tared out. The weight is stable and the weighing system is positioned horizontally. The indicator indicates that the battery needs to be loaded. The following bits are high in this case: 0,1,2,3 and 7. This is in binary 1000 1111. In hexadecimal this becomes 8 and F. 30 hex added, gives 38 and 3 F. These are the ascii characters 8 and ?. When the battery is reloaded, the status, in similar weighing conditions, will be as follows: Binary > 1000 1000; hexadecimal > 8 and 8; ascii characters 8 and 8.

The check sum is compiled as follows:

The first 10 ASCII values are added without carry in a byte. Of this the inverse value with error FFh is taken. Then the value is divided in a high and low nibble. Following 30h is added, which results in the 2 ASCII characters.

Example:

The first ten ascii characters of the emitted datastring are: [W + 00544.17]. The sum of the hexa-values then is:

57+2B+30+30+35+34+34+2E=31+37=215. The least significant number is emitted (2) after which the inverse is taken: E and A. 30 hex added, gives the ascii characters: > and:. The final string thus is as follows: [W+00544.17>:]

Via PC or terminal following commands can be generated:

Z <cr></cr>	Command for zero setting (system <2% loaded) or for tare (system >2% belast) of the weighing system.
P00010. <c R> or P0001.0<c R></c </c 	Sets a preset tare value (PT) in the weighing system. The place of the decimal depends on the smallest graduation. If the graduation has a decimal after de dot, this should also be don in the P command. Is the number value incorect, no action is taken. This can be identified by statusbit nr 6 (stays off). If necessary clear the previous PT if it is still present.
R <cr></cr>	This command releases the PT. Resets HELP2 and HELP4.
T <cr></cr>	Activates the preset tare present in the indicator.